GRUNDFOS ALPHA2 L

Installation and operating instructions
Declaration of Conformity

We Grundfos declare under our sole responsibility that the products GRUNDFOS ALPHA2 L, to which this declaration relates, are in conformity with the Council Directives on the approximation of the laws of the EC Member States relating to

— Machinery (98/37/EC).
— Electrical equipment designed for use within certain voltage limits (2006/95/EC).
 Standards used: EN 61000-6-2 and EN 61000-6-3.

Bjerringbro, 15th May 2008

Svend Aage Kaae
Technical Director
CONTENTS

1. Symbols used in this document .. 4
2. General description .. 5
3. Applications ... 6
4. Installation ... 8
5. Electrical connection ... 11
6. Control panel .. 12
7. Setting the pump ... 14
8. Systems with bypass valve between flow and return pipes 16
9. Start-up ... 18
10. Pump settings and pump performance 20
11. Fault finding chart ... 22
12. Technical data and installation dimensions 23
13. Performance curves ... 25
14. Features ... 31
15. Accessories .. 33
16. Disposal ... 34
Prior to installation, read these installation and operating instructions. Installation and operation must comply with local regulations and accepted codes of good practice.

1. Symbols used in this document

Warning

If these safety instructions are not observed, it may result in personal injury!

Caution

If these safety instructions are not observed, it may result in malfunction or damage to the equipment!

Note

Notes or instructions that make the job easier and ensure safe operation.
2. General description

Contents:

2.1 The GRUNDFOS ALPHA2 L circulator pump
2.2 Advantages of installing a GRUNDFOS ALPHA2 L.

2.1 The GRUNDFOS ALPHA2 L circulator pump

The GRUNDFOS ALPHA2 L circulator pump is designed for the circulation of water in heating systems. Install the GRUNDFOS ALPHA2 L in

• underfloor heating systems
• one-pipe systems
• two-pipe systems.

GRUNDFOS ALPHA2 L incorporates a permanent-magnet motor and differential-pressure control enabling continuous adjustment of the pump performance to the actual system requirements.

2.2 Advantages of installing a GRUNDFOS ALPHA2 L

The installation of a GRUNDFOS ALPHA2 L means

easy installation and start-up

• GRUNDFOS ALPHA2 L is easy to install. With the factory setting, the pump can, in most cases, be started without making any settings.

high degree of comfort

• Minimum noise from valves, etc.

low energy consumption

• Low energy consumption compared to conventional circulator pumps. The GRUNDFOS ALPHA2 L is A-labelled.

![Energy label, A-labelled](image-url)
3. Applications

Contents:
3.1 System types
3.2 Pumped liquids
3.3 System pressure
3.4 Relative air humidity (RH)
3.5 Enclosure class
3.6 Inlet pressure.

3.1 System types

GRUNDFOS ALPHA2 L is suitable for
- systems with constant or variable flows where it is desirable to optimise the setting of the pump duty point
- systems with variable flow-pipe temperature.

Fig. 2 Pumped liquids and operating conditions

GRUNDFOS ALPHA2 L is suitable for
- systems with constant or variable flows where it is desirable to optimise the setting of the pump duty point
- systems with variable flow-pipe temperature.

3.2 Pumped liquids

Clean, thin, non-aggressive and non-explosive liquids, not containing solid particles, fibres or mineral oil. See fig. 2.

In heating systems, the water should meet the requirements of accepted standards on water quality in heating systems, e.g. the German standard VDI 2035.

Warning

The pump must not be used for the transfer of flammable liquids such as diesel oil, petrol and similar liquids.
3.3 System pressure
 Maximum 1.0 MPa (10 bar). See fig. 2.

3.4 Relative air humidity (RH)
 Maximum 95 %. See fig. 2.

3.5 Enclosure class
 IP 42. See fig. 2.

3.6 Inlet pressure
 Minimum inlet pressure in relation to liquid temperature. See fig. 2.

<table>
<thead>
<tr>
<th>Liquid temperature</th>
<th>Minimum inlet pressure [MPa]</th>
<th>[bar]</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤75 °C</td>
<td>0.005</td>
<td>0.05</td>
</tr>
<tr>
<td>90 °C</td>
<td>0.028</td>
<td>0.28</td>
</tr>
<tr>
<td>110 °C</td>
<td>0.108</td>
<td>1.08</td>
</tr>
</tbody>
</table>
4. Installation

Contents:

4.1 Mounting
4.2 Control box positions
4.3 Changing the control box position
4.4 Insulation of pump housing

4.1 Mounting

Fig. 3 Mounting the GRUNDFOS ALPHA2 L

Arrows on the pump housing indicate the liquid flow direction through the pump.

See 12.2 Installation dimensions – GRUNDFOS ALPHA2 L XX-40, XX-50, XX-60.

1. Fit the two gaskets supplied when the pump is mounted in the pipe. See fig. 3, pos. A.
2. Install the pump with the motor shaft horizontal. See fig. 3, pos. B.
4.2 Control box positions

Fig. 4 Control box positions

Warning
The pumped liquid may be scalding hot and under high pressure!
Drain the system or close the isolating valves on either side of the pump before the screws are removed.

Caution
When the position of the control box has been changed, fill the system with the liquid to be pumped or open the isolating valves.

4.3 Changing the control box position

The control box can be rotated in steps of 90 °.
Possible/permissible positions and the procedure of changing the position of the control box are illustrated in fig. 4, pos. A.

Procedure:
1. Slacken and remove the four hexagon-socket head screws holding the pump head with a tee key (M4).
2. Turn the pump head to the desired position.
3. Insert and cross-tighten the screws.
4.4 Insulation of pump housing

Fig. 5 Insulation of pump housing

Note *Limit the heat loss from the pump housing and pipework.*

The heat loss from the pump and pipework can be reduced by insulating the pump housing and the pipe. See fig. 5.

As an alternative, polystyrene insulation shells can be ordered from Grundfos. See 15. Accessories.

Caution *Do not insulate the control box or cover the control panel.*
5. Electrical connection

Fig. 6 Electrical connection

The electrical connections and protection must be carried out in accordance with local regulations.

Warning

The pump must be connected to earth.

The pump must be connected to an external mains switch with a minimum contact gap of 3 mm in all poles.

- The motor requires no external motor protection.
- Check that the supply voltage and frequency correspond to the values stated on the pump. See *14.1 Nameplate*.
- Connect the pump to the mains with the plug supplied with the pump as shown in fig. 6, steps 1 to 8.
- Light in the control panel shows that the electricity supply has been switched on.
6. Control panel

Contents:

6.1 Elements on the control panel
6.2 "POWER ON" indicator light
6.3 Light fields indicating the pump setting
6.4 Push-button for selection of pump setting.

6.1 Elements on the control panel

The control panel on the GRUNDFOS ALPHA2 L comprises:

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>"POWER ON" indicator light</td>
</tr>
<tr>
<td>2</td>
<td>Seven light fields indicating the pump setting</td>
</tr>
<tr>
<td>3</td>
<td>Push-button for selection of pump setting</td>
</tr>
</tbody>
</table>

![GRUNDFOS ALPHA2 L control panel](image)

Fig. 7 GRUNDFOS ALPHA2 L control panel

The control panel on the GRUNDFOS ALPHA2 L comprises:

6.2 "POWER ON" indicator light

The "POWER ON" indicator light, see fig. 7, pos. 1, is on when the electricity has been switched on.

When the "POWER ON" indicator light is on only, a fault preventing the pump from operating properly (e.g. seizing-up) has occurred.

If a fault is indicated, correct the fault and reset the pump by switching the electricity supply off and on.
6.3 Light fields indicating the pump setting

GRUNDFOS ALPHA2 L has seven optional settings which can be selected with the push-button. See fig. 7, pos. 3.

The pump setting is indicated by seven different light fields. See fig. 8.

Fig. 8 Seven light fields

<table>
<thead>
<tr>
<th>Button presses</th>
<th>Light field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>PP2</td>
<td>Highest proportional-pressure curve</td>
</tr>
<tr>
<td></td>
<td>(factory setting)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CP1</td>
<td>Lowest constant-pressure curve</td>
</tr>
<tr>
<td>2</td>
<td>CP2</td>
<td>Highest constant-pressure curve</td>
</tr>
<tr>
<td>3</td>
<td>III</td>
<td>Constant curve, speed III</td>
</tr>
<tr>
<td>4</td>
<td>II</td>
<td>Constant curve, speed II</td>
</tr>
<tr>
<td>5</td>
<td>I</td>
<td>Constant curve, speed I</td>
</tr>
<tr>
<td>6</td>
<td>PP1</td>
<td>Lowest proportional-pressure curve</td>
</tr>
<tr>
<td>7</td>
<td>PP2</td>
<td>Highest proportional-pressure curve</td>
</tr>
</tbody>
</table>

6.4 Push-button for selection of pump setting

Every time the push-button is pressed, see fig. 7, pos. 3, the pump setting is changed.

A cycle is seven button presses. See 6.3 Light fields indicating the pump setting.
7. Setting the pump

Contents:

7.1 Pump setting for system type
7.2 Pump control.

7.1 Pump setting for system type

Fig. 9 Selection of pump setting for system type

Factory setting = Highest proportional-pressure curve (PP2).

Recommended and alternative pump settings according to fig. 9:

<table>
<thead>
<tr>
<th>Pos.</th>
<th>System type</th>
<th>Pump setting</th>
<th>Recommended</th>
<th>Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Underfloor heating</td>
<td>Lowest constant-pressure curve (CP1)*</td>
<td>Highest constant-pressure curve (CP2)*</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Two-pipe systems</td>
<td>Highest proportional-pressure curve (PP2)*</td>
<td>Lowest proportional-pressure curve (PP1)*</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>One-pipe systems</td>
<td>Lowest proportional-pressure curve (PP1)*</td>
<td>Highest proportional-pressure curve (PP2)*</td>
<td></td>
</tr>
</tbody>
</table>

* See 13.1 Guide to performance curves.

Changing from recommended to alternative pump setting

Heating systems are "slow" systems that cannot be set to the optimum operation within minutes or hours.

If the recommended pump setting does not give the desired distribution of heat in the rooms of the house, change the pump setting to the shown alternative.

Explanation to pump settings in relation to performance curves, see 10. Pump settings and pump performance.
7.2 Pump control

During operation, the pump head will be controlled according to the principle "proportional-pressure control" (PP) or "constant-pressure control" (CP).

In these control modes, the pump performance and consequently the power consumption are adjusted according to the heat demand in the system.

Proportional-pressure control

In this control mode, the differential pressure across the pump is controlled according to the flow.

The proportional-pressure curves are indicated by PP1 and PP2 in the Q/H diagrams. See 10. Pump settings and pump performance.

Constant-pressure control

In this control mode, a constant differential pressure across the pump is maintained, irrespective of the flow.

The constant-pressure curves are indicated by CP1 and CP2 and are the horizontal performance curves in the Q/H diagrams. See 10. Pump settings and pump performance.
8. Systems with bypass valve between flow and return pipes

Contents:
8.1 Purpose of bypass valve
8.2 Manually operated bypass valve
8.3 Automatic bypass valve (thermostatically controlled).

8.1 Purpose of bypass valve

The purpose of the bypass valve is to ensure that the heat from the boiler can be distributed when all valves in the underfloor-heating circuits and/or thermostatic radiator valves are closed.

System elements:
• bypass valve
• flowmeter, pos. A.

The minimum flow must be present when all valves are closed.
The pump setting depends on the type of bypass valve used, i.e. manually operated or thermostatically controlled.

8.2 Manually operated bypass valve

Follow this procedure:
1. Adjust the bypass valve with the pump in setting I (speed I).
 The minimum flow \(Q_{\text{min}}\) for the system must always be observed.
 Consult the manufacturer’s instructions.
2. When the bypass valve has been adjusted, set the pump according to 7. Setting the pump.
8.3 Automatic bypass valve (thermostatically controlled)

Follow this procedure:

1. Adjust the bypass valve with the pump in setting I (speed I). The minimum flow (Q_{min}) for the system must always be observed. Consult the manufacturer's instructions.

2. When the bypass valve has been adjusted, set the pump to the lowest or highest constant-pressure curve. Explanation to pump settings in relation to performance curves, see 10. Pump settings and pump performance.
9. Start-up

Contents:
9.1 Before start-up
9.2 Venting the pump
9.3 Venting of heating systems.

9.1 Before start-up

Do not start the pump until the system has been filled with liquid and vented. The required minimum inlet pressure must be available at the pump inlet. See 3. Applications and 12. Technical data and installation dimensions.

9.2 Venting the pump

The pump is self-venting. It need not be vented before start-up.

Air in the pump may cause noise. This noise ceases after a few minutes running.

Quick venting of the pump can be obtained by setting the pump to speed III for a short period, depending on system size and design.

When the pump has been vented, i.e. when the noise has ceased, set the pump according to the recommendations. See 7. Setting the pump.

Caution
The pump must not run dry.

The system cannot be vented through the pump. See 9.3 Venting of heating systems.
9.3 Venting of heating systems

Fig. 12 Venting of heating systems

The heating system can be vented via an air escape valve installed above the pump (1).

In heating systems that often contain much air, Grundfos recommends the installation of pumps with pump housing with air separator, i.e. ALPHA2 pumps, type ALPHA2 XX-XX A.

When the heating system has been filled with liquid, follow this procedure:
1. Open the air escape valve.
2. Set the pump to speed III.
3. Let the pump run for a short period, depending on system size and design.
4. When the system has been vented, i.e. when the possible noise has ceased, set the pump according to the recommendations. See 7. Setting the pump.

Repeat the procedure, if necessary.

Caution The pump must not run dry.
10. Pump settings and pump performance

Contents:

10.1 Relation between pump setting and pump performance.

10.1 Relation between pump setting and pump performance

Figure 13 shows the relation between pump setting and pump performance by means of curves. See also 13. Performance curves.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Pump curve</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP1</td>
<td>Lowest proportional-pressure curve</td>
<td>The duty point of the pump will move up or down on the lowest proportional-pressure curve, see fig. 13, depending on the heating demand. The head (pressure) is reduced at falling heating demand and increased at rising heating demand.</td>
</tr>
<tr>
<td>PP2 (factory setting)</td>
<td>Highest proportional-pressure curve</td>
<td>The duty point of the pump will move up or down on the highest proportional-pressure curve, see fig. 13, depending on the heating demand. The head (pressure) is reduced at falling heating demand and increased at rising heating demand.</td>
</tr>
<tr>
<td>CP1</td>
<td>Lowest constant-pressure curve</td>
<td>The duty point of the pump will move out or in on the lowest constant-pressure curve, see fig. 13, depending on the heating demand in the system. The head (pressure) is kept constant, irrespective of the heating demand.</td>
</tr>
<tr>
<td>CP2</td>
<td>Highest constant-pressure curve</td>
<td>The duty point of the pump will move out or in on the highest constant-pressure curve, see fig. 13, depending on the heating demand in the system. The head (pressure) is kept constant, irrespective of the heating demand.</td>
</tr>
<tr>
<td>III</td>
<td>Speed III</td>
<td>ALPHA2 L runs at a constant speed and consequently on a constant curve. In speed III, the pump is set to run on the max. curve under all operating conditions. See fig. 13. Quick venting of the pump can be obtained by setting the pump to speed III for a short period. See 9.2 Venting the pump.</td>
</tr>
</tbody>
</table>

Fig. 13 Pump setting in relation to pump performance
### Setting	Pump curve	Function
II | Speed II | ALPHA2 L runs at a constant speed and consequently on a constant curve. In speed II, the pump is set to run on the medium curve under all operating conditions. See fig. 13.
I | Speed I | ALPHA2 L runs at a constant speed and consequently on a constant curve. In speed I, the pump is set to run on the min. curve under all operating conditions. See fig. 13.
11. Fault finding chart

Warning

Before starting any work on the pump, make sure that the electricity supply has been switched off and that it cannot be accidentally switched on.

<table>
<thead>
<tr>
<th>Fault</th>
<th>Control panel</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The pump does not run.</td>
<td>Light off.</td>
<td>a) One fuse in the installation is blown.</td>
<td>Replace the fuse.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b) The current-operated or voltage-operated circuit breaker has tripped out.</td>
<td>Cut in the circuit breaker.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c) The pump is defective.</td>
<td>Replace the pump.</td>
</tr>
<tr>
<td></td>
<td>"POWER ON" is on only.</td>
<td>a) Electricity supply failure. Might be too low.</td>
<td>Check that the electricity supply falls within the specified range.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b) The pump is blocked.</td>
<td>Remove the impurities.</td>
</tr>
<tr>
<td>2. Noise in the system.</td>
<td>"POWER ON" and the light field for pump setting are on.</td>
<td>a) Air in the system.</td>
<td>Vent the system. See 9.3 Venting of heating systems.</td>
</tr>
<tr>
<td>3. Noise in the pump.</td>
<td>"POWER ON" and the light field for pump setting are on.</td>
<td>a) Air in the pump.</td>
<td>Let the pump run. It vents itself over time. See 9.2 Venting the pump.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b) The inlet pressure is too low.</td>
<td>Increase the inlet pressure or check the air volume in the expansion tank, if installed.</td>
</tr>
</tbody>
</table>
12. Technical data and installation dimensions

Contents:

12.1 Technical data
12.2 Installation dimensions – GRUNDFOS ALPHA2 L XX-40, XX-50, XX-60.

12.1 Technical data

<table>
<thead>
<tr>
<th>Supply voltage</th>
<th>1 x 230 V – 10 %/+ 6 %, 50 Hz, PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor protection</td>
<td>The pump requires no external motor protection.</td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP 42</td>
</tr>
<tr>
<td>Insulation class</td>
<td>F</td>
</tr>
<tr>
<td>Relative air humidity</td>
<td>Maximum 95 %</td>
</tr>
<tr>
<td>System pressure</td>
<td>Maximum 1.0 MPa, 10 bar, 102 m head</td>
</tr>
<tr>
<td>Inlet pressure</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Liquid temperature</th>
<th>Minimum inlet pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤+75 °C</td>
<td>0.05 bar, 0.005 MPa, 0.5 m head</td>
</tr>
<tr>
<td>+90 °C</td>
<td>0.28 bar, 0.028 MPa, 2.8 m head</td>
</tr>
<tr>
<td>+110 °C</td>
<td>1.08 bar, 0.108 MPa, 10.8 m head</td>
</tr>
</tbody>
</table>

EMC EN 61000-6-2 and EN 61000-6-3

Sound pressure level The sound pressure level of the pump is lower than 43 dB(A).

Ambient temperature 0 °C to +40 °C

Temperature class TF110 to CEN 335-2-51

Surface temperature The maximum surface temperature will not exceed +125 °C.

Liquid temperature +2 °C to +110 °C

To avoid condensation in the control box and stator, the liquid temperature must always be higher than the ambient temperature.

<table>
<thead>
<tr>
<th>Ambient temperature [°C]</th>
<th>Liquid temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min. [°C]</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>
12.2 Installation dimensions – GRUNDfos ALPHA2 L XX-40, XX-50, XX-60

Fig. 14 Dimensional sketches, ALPHA2 L XX-40, XX-50, XX-60

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Dimensions</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPHA2 L 15-40 130</td>
<td>130 77 78 46 49 27 129 79 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALPHA2 L 15-50 130*</td>
<td>130 77 78 46 49 27 129 79 1 1/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALPHA2 L 25-40 130</td>
<td>130 77 78 46 49 27 129 79 1 1/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALPHA2 L 25-40 180</td>
<td>180 78 77 47 48 26 127 81 1 1/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALPHA2 L 32-40 180</td>
<td>180 78 77 47 48 26 127 81 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALPHA2 L 15-60 130</td>
<td>130 77 78 46 49 27 129 79 1**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALPHA2 L 25-60 130</td>
<td>130 77 78 46 49 27 129 79 1 1/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALPHA2 L 25-60 180</td>
<td>180 78 77 47 48 26 127 81 1 1/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALPHA2 L 32-60 180</td>
<td>180 78 77 47 48 26 127 81 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*) For the UK market only. **) For UK 1 1/2.
13. Performance curves

Contents:

13.1 Guide to performance curves
13.2 Curve conditions
13.3 Performance curves, ALPHA2 L XX-40
13.4 Performance curves, ALPHA2 L XX-50
13.5 Performance curves, ALPHA2 L XX-60.
13.1 Guide to performance curves

Each pump setting has its own performance curve (Q/H curve).

A power curve (P1 curve) belongs to each Q/H curve. The power curve shows the pump power consumption (P1) in Watt at a given Q/H curve.

The P1 value corresponds to the value that can be read from the pump display, see fig. 15:

![Performance curves in relation to pump setting](image)

Fig. 15 Performance curves in relation to pump setting

<table>
<thead>
<tr>
<th>Setting</th>
<th>Pump curve</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP1</td>
<td>Lowest proportional-pressure curve</td>
</tr>
<tr>
<td>PP2</td>
<td>Highest proportional-pressure curve (factory setting)</td>
</tr>
<tr>
<td>CP1</td>
<td>Lowest constant-pressure curve</td>
</tr>
<tr>
<td>CP2</td>
<td>Highest constant-pressure curve</td>
</tr>
<tr>
<td>III</td>
<td>Constant speed, speed III</td>
</tr>
<tr>
<td>II</td>
<td>Constant speed, speed II</td>
</tr>
<tr>
<td>I</td>
<td>Constant speed, speed I</td>
</tr>
</tbody>
</table>

For further information about pump settings, see

6.3 Light fields indicating the pump setting

7. Setting the pump

13.2 Curve conditions

The guidelines below apply to the curves on the next pages:

- Test liquid: Airless water.
- The curves apply to a density of $\rho = 983.2 \text{ kg/m}^3$ and a liquid temperature of $+60 \, ^\circ\text{C}$.
- All curves show average values and should not be used as guarantee curves. If a specific minimum performance is required, individual measurements must be made.
- The curves for speeds I, II and III are marked.
- The curves apply to a kinematic viscosity of $\nu = 0.474 \text{ mm}^2/\text{s}$ (0.474 cSt).
13.3 Performance curves, ALPHA2 L XX-40

Fig. 16 Performance curves, ALPHA2 L XX-40
13.4 Performance curves, ALPHA2 L XX-50

Fig. 17 Performance curves, ALPHA2 L XX-50
13.5 Performance curves, ALPHA2 L XX-60

![Performance curves, ALPHA2 L XX-60](image)

Fig. 18 Performance curves, ALPHA2 L XX-60
14. Features

Contents:

14.1 Nameplate
14.2 Type key.

14.1 Nameplate

Fig. 19 Nameplate, GRUNDFOS ALPHA2 L

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
<th>Pos.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pump type</td>
<td>8</td>
<td>Rated current [A]:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Min.: Minimum current [A]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Max.: Maximum current [A]</td>
</tr>
<tr>
<td>2</td>
<td>Product number</td>
<td>9</td>
<td>Input power P_1 [W]:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Min.: Minimum input power P_1 [W]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Max.: Maximum input power P_1 [W]</td>
</tr>
<tr>
<td>3</td>
<td>Serial number</td>
<td>10</td>
<td>Maximum system pressure [MPa]</td>
</tr>
<tr>
<td>4</td>
<td>Production code</td>
<td>11</td>
<td>CE mark and approvals</td>
</tr>
<tr>
<td></td>
<td>• 1st and 2nd figures = year</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 3rd and 4th figures = week</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Enclosure class</td>
<td>12</td>
<td>Country of origin</td>
</tr>
<tr>
<td>6</td>
<td>Voltage [V]</td>
<td>13</td>
<td>Temperature class</td>
</tr>
<tr>
<td>7</td>
<td>Frequency [Hz]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
14.2 Type key

<table>
<thead>
<tr>
<th>Example</th>
<th>ALPHA2 L</th>
<th>25</th>
<th>-40</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal diameter (DN) of suction and discharge ports [mm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum head [dm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port-to-port length [mm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
15. Accessories

Fig. 20 Accessories

Accessories for GRUNDFOS ALPHA2 L. See fig. 20.

Accessories include

- fittings (unions and valves)
- insulation kits (insulation shells)
- plug.
16. Disposal

This product or parts of it must be disposed of in an environmentally sound way:
1. Use the public or private waste collection service.
2. If this is not possible, contact the nearest Grundfos company or service workshop.

Subject to alterations.
Being responsible is our foundation
Thinking ahead makes it possible
Innovation is the essence